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Field tests show that cracks can propagate steadily at more than 300 m sec -1 along gas- 
pressurized pipelines of normally ductile polyethylene, once initiated by impact. Although the 
determination of safe operating conditions demands a knowledge of the pipe material's resis- 
tance R to such high-velocity cracks, devising an appropriate small-scale test presents major 
problems. Instrumented drop-weight testing of double torsion specimens offers a promising 
solution: constant-velocity brittle crack propagation is observed and, since the static defor- 
mation mode remains admissible in the dynamic r6gime, a simple analysis is possible. From 
displacement data, this provided quite consistent results up to 200 m sec -1 crack velocity, 
whilst load measurements were more affected by transient torsional wave propagation. A 
simple dynamic analysis satisfying more boundary conditions supports the displacement-based 
quasi-static results, and offers to extend the method to higher crack velocities. 

1. Introduction 
A major factor in the design of plastic pipes has been 
the avoidance of cracking. In the past, the obser- 
vation that slow crack growth can occur, usually after 
some initiation period, has motivated the selection of  
materials on the basis of  crack resistance versus crack 
speed data, measured under what were judged to be 
particularly severe conditions. For  polyethylene, for 
example, cracks are grown at 80°C in a dilute deter- 
gent solution [1]. This approach assumes that pipes are 
subjected to steady loading in service, but that over- 
loading due to poor laying or ground movements 
would be resisted by the same mechanisms. 

As in all design exercises, a single failure mode has 
been identified as the most critical, and criteria 
developed to avoid its occurrence. It is, of  course, 
possible to envisage other events which could give rise 
to failure, and another which has been discussed 
recently as perhaps more critical is that of continuous 
rapid crack growth arising from impact on a press- 
urized pipe [2]. Self-sustaining crack propagation of 
this type has long been observed in steel pipes, and has 
also been reported in plastics [3]. An upper-bound 
analysis based on the worst possible set of  circum- 
stances has been used to assess this situation [4]. In a 
pipe of diameter D and wall thickness B under press- 
ure p, the strain energy per unit length is 

0 -2 

where 0- is the hoop stress ~ = (pD)/2B. It is now 
assumed that all of  this energy is available to create 
new surface area, and if R is the energy per unit plane 
area required to do this (a material property equiv- 
alent to Go, the critical strain energy release rate), then 
that required per unit pipe length is RB. Equating 
these two quantities yields the result 
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rC p2 D3 
ER = K~ - 4 B 2 (1) 

For  a given material of crack resistance R (or critical 
stress intensity factor K¢), we therefore have a limiting 
pressure, for any given pipe, below which the crack 
will not propagate, so the determination of R is of 
particular importance. British Gas [2] used an instru- 
mented Charpy impact test to find Kc at initiation, and 
have checked the results by performing full-scale tests 
on pipes. The comparison proved inconclusive, since 
secondary variables such as test temperature appear to 
have a much larger effect than expected, but reassur- 
ing in that it proved difficult to make cracks grow for 
any distance. The issues are difficult to resolve in 
full-scale tests, which are limited in number by cost 
and time considerations. 

Much interest has been generated by a suggestion of 
van Crombrugge [5] to use a smaller scale test in which 
a short length of  pipe ( -~ I m) is pressurized, and then 
a small crack is initiated at one end by an impact. 
Materials are then compared on the basis of how far 
through the sample the crack propagates. This is a 
much easier test than the full-scale version but, of 
course, lacks the effect of soil loading, etc.; more 
seriously, since the impact energy and pressure are 
fixed, it measures only the energy required to initiate 
a crack. Since materials with high impact initiation 
resistance leave less energy to drive subsequent 
propagation, good correlations have been reported [6] 
between van Crombrugge test data and performance 
in other impact initiation (e.g. Charpy) tests. 

Indeed, most of  these small-scale tests are limited to 
comparing materials in the crack initiation rdgime 
(a = 0), whereas it is their resistance to cracks run- 
ning at velocities of, say, h = 200 to 300msec -l 
which may be critical. In accidental impact damage, it 
must be assumed that there will be more than enough 
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energy to initiate such a failure, and our concern 
should be to measure the material's resistance to crack 
propagation. The ideal solution is a small-scale lab- 
oratory test in which the crack is propagated at a 
controllable and uniform speed at which R (or Kin) 
can be measured. Such tests present major problems; 
since their duration is necessarily short, transducer 
and recorder limitations make measurements difficult 
- though less so as technology advances. More 
profound are the problems of calculating the energy 
balance in a high-speed cracking process, in which 
inertial loads and kinetic energy exchanges may be 
very high. These problems are compounded for the 
polyethylenes used on gas pipes because they are, by 
design, extremely tough and resistant to crack initi- 
ation, and it is difficult to induce crack propagation at 
all. 

All of these problems are, it appears, overcome by 
the use of the impact loaded double torsion (DT) test 
described here. Attempts to grow cracks in tension 
tests fail because high nett-section stresses induce duc- 
tile tearing, but the double torsion configuration gives 
rather low stresses. In addition, the grooving of the 
specimen which is necessary to control crack direction 
promotes brittle failure by suppressing surface plane- 
stress zones. It has been found that by cooling poly- 
ethylene specimens to 0 ° C in iced water (a reasonable 
simulation of the worst-case UK service environment), 
and impacting them at over 6 m sec -~ , a crack could 
be propagated through the entire section ( -  150 mm) 
at velocities of up to 200m sec -l . This method has 
long proved attractive for slow growth investigation 
because of its ability to control the crack velocity ~i 
with the displacement rate, and this feature is to some 
extent retained in the high speed rfgime. Finally, and 
most importantly, the simple static deformation system 
enables kinetic energy to be computed exactly for the 
"quasi-static" case, in which a constant rotation rate 
at the load point, and a constant crack speed (con- 
ditions followed during tests), are maintained in a 
specific relationship. This enables R (and hence Kc) to 
be computed as a function of gt, to provide the sought- 
for material assessment. 

2. Analysis: quasi-static conditions 
Crack resistance R can be calculated by computing 
strain (Ue) and kinetic (Uk) energy changes, and the 
external work done (E), during extension of a crack of 
length a and width Be, and employing the energy 
balance 

dE dUe dUk 
PR = da da da (2) 

The crack resisting force PR is simply RBo for a 
straight-fronted crack, but for the highly curved DT 
crack front a correction is necessary [7] which we will 
neglect in the sequel to avoid obscuring other issues. 

A quasi-static deformation model for the DT speci- 
men is well established, and recent developments of it 
[8] help to explain some dynamic phenomena. Each 
half of the specimen behaves as a simple torsion beam 
for its entire length (L' - L) < x < L' (Fig. 1). 
According to Saint-Venant torsion theory, any rec- 
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Figure 1 Double torsion (DT) specimen geometry. 

tangular section B H  undergoes only simple rotation q~ 
and out-of-plane deflection u = u(y ,  z, &NOx), and 
transmits a torque 

r (x)  = - ~K ~x  (3) 

where the torsional rigidity is 

~ K  = # Z H B  3 (4) 

/~ being the shear modulus and Z ( B / H )  a function 
usefully approximated by 

In the static case, ~T/~x = 0 in 0 < x < a so that 
~b(x) is linear. Each beam can be regarded as free up 
to the crack tip x = a, but subject to a restoring 
torque proportional to qS, and acting at the crack 
plane, in a < x < L'. A simple model [8] shows q~ to 
be non-zero at x = a, but to extrapolate to zero at 

a e = a + ~ (1 + v~)ZHB3 (6) 

(for sufficiently large (L' - a)). The factor c was esti- 
mated as 1.5 in earlier work, but re-analysis of the 
data, taking into account finite rotation effects [9] 
leads us to a revised estimate of 4. For most purposes, 
the displacement system is well described by 

q~ = 0 ( 1 - - ~ ) ,  O < x < ae} (7) 

~9 = 0 , x > a  e 

where 0 --- qS(0), the imposed end rotation. 
In the dynamic case, the torque T(x) decays accord- 

ing to 
~3T 02q~ 
a--~ = 0I &2 (8) 

being the density and 0I the polar mass moment of 
inertia 

e I  = 1 1 0 B H ( B  2 + H 2) (9) 

Since from Equation 7 we have, noting that c~ = ae 
(dots denoting time derivatives), 

=- c3t 2 - 

+ 2 ( 0  O-~)it x + o i i  x 
ae ae ae ae 

(lO) 



there is an additional non-dynamic (~6 = 0 every- 
where) solution at 

Oa, a - = a~ (11) 
0 

defining a constant steady-state crack velocity. Since 
q~" =- C~/~X = O/a e and q~ = 0, the total strain and 
kinetic energies are then simply 

U~ = f2°~K dx (12) 

and 
farO"? 

Uk = ~2 ° 01 t'-~-~) dx (13) 

The external work done is 

E = 2M, O, (14) 

the applied moment M = T(0) remaining at its static 
value 

(o) 
Ms ~ #K (15) 

Thus, from Equation 2 we have 

(16a) 

o r  

= 2, 1 -  (16b) \ct/ ] 
where ct--- (#K/J) 1/2, which imposes an absolute 
upper crack speed for this deformation mode, has 
often been identified as the torsional wave velocity. 
This conclusion could be arrived at by differentiating 
Equation 3 and equating it to Equation 8 to form a 
wave equation. However, we shatl later demonstrate 
that torsional waves may travel at up to the shear- 
wave velocity, and that only displacement profiles 
having, like Equation 7, ~b"= 0 are restricted in 
velocity to ct. 

By further use of Equations 11 and 15, Equation 16 
can be re-cast in a variety of forms 

PR(O, a¢) = /JK ~ 1 -- (16c) 
\ ct) J 

o r  

o r  

o r  

1 - -  (16d) 
\C t /  J 

PR(Ms' O'ae) - M~O[ - \ct/(as/21] (16e) 

PR(M,, O, d~s) = xl//~Oa [1 - \c,/(di'/21J (16f) 

amongst others in which the kinetic energy correction 
is similarly translated. The equivalence of these in 
actual use is affected not only by how near to the 
steady-state crack speed a is, but also on the accessi- 
bility and consistency of the other measurements. 

3. Experimental method and apparatus 
Two modified high density polyethylene (HDPE) pipe 
grades were supplied as compression-moulded 6 mm 
plate by BP Chemicals Limited: Rigidex 002/40, a 
yellow-pigmented gas pipe material, and 002/50, blue 
pigmented, for water pipes. Some comparative tests 
were also carried out on an amine-cured epoxy, Aral- 
dite MY750/HT972 (CIBA-Geigy (UK) Limited), on 
which extensive high-speed tests have been carried out 
in a parallel programme. Properties determined at 
very high strain rates using an ultrasonic technique* 
are shown in Table I. DT specimens 2H = 90 mm 
wide and L = 180 mm long were cut from the plate, 
grooved 1 mm deep along one face for crack guidance, 
and notched with a "chevron" profile to help suppress 
the initiation transient. No other attempt was made to 
control groove or notch acuity. Since crack length and 
velocity must be monitored, a pattern of resistance 
(graphite) and conductive (silver) tracks was painted 
onto the grooved face, generating a double-staircase 
voltage-trace during fracture (Fig. 2). 

Controlled crosshead displacement rates of up 
to 50msec -1 are impossible to maintain without 
extremely complicated equipment. A simpler alter- 
native is to accelerate a sufficiently massive and well- 
aimed projectile, measure its velocity immediately 
prior to impact, and infer its subsequent deceleration 
from the reaction load. This was implemented using a 
previously-constructed vertical air gun of 1.2 m drop. 
The existing breech dimensions and barrel cross- 
section (38 mm square) imposed a size limit on the 
lead-ballasted steel projectile, whose 0.5kg mass 
proved to be somewhat low for the slowest tests: 
in free-fall, the impact velocity, measured by success- 
ive interruption of two infrared beams, is about 
4.5 m sec l limiting the work input to 5 J. Under 3 bar 
air pressure, however (the maximum used in these 
tests) the projectile attains over 25 m sec-l and carries 
over 100 J, and 20 to 30 cm depth of sand is needed to 
arrest it. 

Two balls on the front of the impacting projectile 
load the specimen in four-point loading along a line 
10mm (=- L-L')  from one end. The outer support 
points, also spherical) are linked to a single strain 
gauge load cell. Output from the cell exciter/amplifier 
is recorded, simultaneously with that from the crack 
length gauge, on a Nicolet 4094 dual-channel digital 
oscilloscope, running in pre-trigger mode. This instru- 
ment, fitted with a twin disc drive, can both store test 
records permanently and carry out extensive process- 
ing on them, such as load integration and Fourier 
analysis. 

The load measurement system, while as compact as 
possible, was designed to record the plateau load for 

* The authors  are indebted to Dr  B. Crouch of  Imperial College and Dr  R. Whitehead o f  the Depar tment  of  Materials, University of  Surrey, 
for making these measurements .  
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TAB L E I Properties of materials tested 

Material Temperature 
(oc) 

Density, Q Shear Young's 
(kgm -2) Modulus, It Modulus, E 

(GPa) 

Rigidex 002/40 0 939 0.845 2.40 
Rigidex 002/50 0 946 0.901 2.52 
Araldite MY750/HT972 20 1194 1.73 4.74 

fast quasi-static tests rather than the type of initi- 
ation transient which is the focus of attention in, for 
example, instrumented Charpy tests. It did not prove 
to have an extended high-frequency response but, as 
will be seen, provided load records whose detailed 
structure corresponded closely both to the crack 
length gauge output, and to our understanding of 
wave propagation effects in the specimen. Tapping the 
load points directly with a piezo-electric force trans- 
ducer of very high resonant frequency, and comparing 
the two output signals and their Fourier transforms, 
revealed a well-damped resonance at 2.6kHz with 
progressive attenuation of higher-frequency com- 
ponents. The load cell itself introduced an 8.3 kHz 
resonance which was filtered. 

4. R e s u l t s  
All tests induced brittle crack extension. The exposed 
surfaces were glassy except, in HDPE,  near the upper 
surface, where the characteristically curved DT crack 
front advances at a relatively low speed [7]. The upper 
15 to 20% of the crack path was rough and stress- 
whitened; occasionally, a specimen survived testing in 
one piece, its two halves hinged together along this 
line. 

4.1. Load point rotation and crack length 
Some low-speed (i.e. free-fall) tests on HDPE exhibited 
crack arrest at an earlier stage, the projectile having 
bounced off. Subsequent fracture revealed a broad 
( - l m m )  stress-whitened arrest line marking the 

C~ck lengfh, a 

Figure 2 Drop-weight loaded DT test, showing crack length gauge. 
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front. The majority of tests at these rates (0 = 4.5 to 
6 m sec - t )  did fracture the specimen completely, but 
the crack length record and the exposed surface both 
revealed a series of  arrest lines. Correspondence 
between these was excellent, suggesting that timing 
track fracture generally neither preceded nor lagged 
material separation. This stick-slip crack growth is 
believed, by analogy with the phenomenon in epoxies 
at much lower speeds, to indicate a minimum in the 
material's resistance versus crack speed characteristic, 
corresponding to the suppression of a crack blunting 
mechanism. Crack velocities of less than 67 m sec -1 
could not be observed in either material. 

Displacement v and displacement rate 0 having 
been computed from the load integrals, impact 
velocity, rotation 0 and rotation rate 0 were calculated 
using a large-displacement analysis [9] in which the 
effects of rotation, impact and support point radii r, 
and r2 and specimen thickness are accounted for. The 
relation 

where 

73 
--  = t a n 0 -  y ( s e c 0 -  1) (17) 
D 

r l + r 2 + B  
Y=-- D 

and D is the small-displacement moment arm, must be 
inverted by iteration; then 

0 
0 -- (18) 

D sec 20(1 -- 7 sin 0) 

can be calculated directly. Rotations of up to 30% 
above which the sides of  the projectile hit the specimen 
surface, were not uncommon in HDPE. Note that 
even for constant 0 the rotation rate is not generally 
constant, but first accelerates and then decelerates, 
introducing an unaccounted for inertial element into 
the contact force; furthermore, the measured load 
must also be converted to an applied moment using 
the large-displacement form 

M = 1 p D  sec 2 0(1 - Y sin 0) (19) 

These are the first of many difficulties in interpreting 
the measured load P, which we now consider in more 
detail. 

4.2. Load aga ins t  t ime  r eco rds  
DT test load traces for slow crack growth in brittle 
materials normally show one of  two forms: an essen- 
tially linear ramp is followed by an initial drop on 
crack initiation ("pop-in") to either a plateau, during 
continuous growth, or a static re-loading ramp to 
subsequent re-initiation, and so on, during "stick- 
slip" crack growth. Tests on H D P E provided similar 
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Pit records: stick-slip up to about 6 m sec-1 (Fig. 3a) 
and continuous growth at higher rates (Fig. 3b). When 
corrected for delay due to the load linkage (0.1 m sec) 
and to torsional wave propagation at the shear wave 
velocity Cs -= (]A/O) 1/2, the load drops corresponded 
closely to recorded crack jumps. 

Virtually all tests showed periods of constant- 
velocity crack growth covering at least 30 to 40 mm - 
sometimes 100 mm. As the crack approached the end 
a = L', it generally decelerated slightly (in contrast to 
typical behaviour in slow-rate tests), but extrapolation 
from the last track at a = 140mm still suggested load 
to be sustained for long after end breakthrough at 
L' = 170 mm. This illustrates the low-rate ductility of 
HDPE; considerable work is absorbed by the hinge on 
the upper specimen surface, although this work is not, 
as in some Charpy test analyses, included in the result- 
ing toughness measurement. 

For impact velocities exceeding 12msec -I,  the 
resemblance to quasi-static load/time records fades 
rapidly. It becomes clear that considerable crack 
growth has occurred before a load drop is registered, 
while most of the plateau region is attributable to 
ductile hinging. While much information above 
2.6 kHz in the applied load signal has been lost, we 
consistently observe that remaining details can be 
explained in terms of axial wave propagation phenom- 
ena, which are now considered in some detail. 

The beam root model [8], mentioned above in con- 
nection with root compliance prediction, assumes 
each half of the specimen to behave as an independent 
torsion beam (i.e. any section rotating and warping 
only) along its entire length L, although for a < 

Figure 3 Typical  load and  crack length  records at  var ious  impac t  
velocities, % (a) Vo = 4 to 6 m s e c  l, (b) Vo = 6 to 1 2 m s e c  -1,  (c) 
~b o = 8 m s e c  - t ,  (d) ~3 o : 12 to 1 5 m s e c  -~, (e) ~)o = 15 to 
20 m sec -  1. 

x < L' it is subject to a concentrated moment at the 
crack plane proportional to its rotation. In the static 
case, this assumption implies an exponential decay in 
~b(x) for x > a, and leads to expressions for root 
compliance and crack shape. In the dynamic case, it 
can be shown [10] that waves of sufficiently high fre- 
quency will travel indefinitely along such a supported 
beam. As seen from the load plane, the beam root is 
therefore quite rigid and reflective (as assumed in a 
previous dynamic DT analysis [11]) to low frequency 
energy, but it is compliant and transparent to high 
frequency waves. These are subsequently reflected off 
the end face with an inversion, and pass back through 
the beam root to be recorded at the load plane. It is 
shown in Appendix A that high-frequency torsional 
waves travel at approximately the shear wave velocity. 

Return of the inverted impact wavefront after a 
period 2L'/c s was easily observable on most Pit 
records, but is best illustrated by one in which a long 
initial crack (from the arrested low-rate test of Fig. 3a) 
was reloaded at higher speed (Fig. 3e). The successive 
low-frequency wave reflections of Popelar's model [11] 
which settle into quasi-static torsion of the free beam 
in 0 < x < a are hardly detectable, but the reflected 
high-frequency wave packet arrives at exactly the 
expected time, unloading the plane x = 0 long before 
crack re-initiation. After a further period 2L'/cs, 
unloading abruptly ceases as the wavefront which it 
has itself propagated returns to assist loading. Further 
reflections are rarely observable since continuing end 
torsion O/a~ grows to dominate smaller torsions due to 
wave propagation, and because the supported beam in 
a < x < L' disperses wave energy by transmitting 
longer wavelengths slower than shorter ones [10]. 
Note that the characteristic frequency of this defor- 
mation mode is less than 1.5kHz, well below the 
minimum resonance of the load measurement system; 
load pulses, generated as described above, are passed 
without significant distortion at this time-scale. 
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Crack initiation, which sends an unloading wave 
backwards and a loading wave forwards, further com- 
plicates the picture. It was observed that initiation of 
a slow crack influenced the load trace almost immedi- 
ately, whereas initiation of a fast crack influenced it 
significantly only after a period corresponding to end 
reflection and inversion of the forward loading wave. 
This is essentially a Doppler effect whereby, with 
increasing crack speed, an upwar d shift in the fre- 
quency of the forward wave, enabling its transmission 
through the beam root, is balanced by a reduction in 
the rearward unloading rate. Load/time traces for 
high speed tests present a strange picture, in which 
crack initiation and propagation hardly seem to unload 
the specimen. The load continues to rise rapidly until 
the arrival of the inverted impact wave, closely fol- 
lowed or simultaneous with the arrival of the inverted 
initiation wave, starts to reverse it (Fig. 3e). 

In summary, although the bandwidth of the load- 
cell based recording system used was limited, signifi- 
cant features of the load/time signal which arose from 
wave propagation phenomena lay well within it. These 
phenomena may in themselves, however, make the 
measured load at any time unrepresentative of the 
crack tip environment. 

5. Discussion 
These observations narrow the choice of methods for 
calculating R. The load-point moment M is a poor 
indicator of the work input to the near-tip region 
(particularly at high impact speeds) where Fig. 4 
shows that the load sampled at moderate crack 
lengths far exceeded the quasi-static value computed 
from Equation 15. At lower speeds, many tests yielded 
loads lower than this prediction, probably due to 
projectile deceleration. The crucial issue is to what 
extent these disparities are reflected on the near-tip 
energy balance. Although the quasi-static moment 
value (Equation 15) is implicit in all of Equations 16, 
its explicit appearance in variants D, E and Fis  associ- 
ated with unacceptable scatter on the R values cal- 
culated from them (not plotted) and we are justified in 
rejecting them. 

R values were also computed by Methods B and C, 
and the latter are plotted in Fig. 5. These show no 
more scatter than other dynamic test methods, and 
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Figure 4 Comparison of measured load during fracture with that 
predicted quasi-statically from displacement and crack length. (o) 
Rigidex 002/40, (D) Rigidex 002/50. 
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Figure 5 Crack resistance as a function of crack velocity. Computed 
by quasi-static analysis from displacement and crack length data. 
(O) Rigidex 002/40, (D) Rigidex 002/50. 

indicate a clear, near-constant minimum of 2 kJ m -2 

(K ic=  2.2MPam ~/2) with little distinction between 
the two materials. The results from Method B, how- 
ever, show no relationship between R and ~ at all and 
are not plotted. Since they are a factor of (d/as)2 larger 
than those plotted in Fig. 5, the problem is illustrated 
by Fig. 6: although DT cracks tend to run at a con- 
stant velocity, any bias towards the "steady-state" 
value is rather weak. They generally run slower, but 
the overall'indeterminancy is particularly severe in the 

= 120 to 150msec ~ range, where some run very 
much faster. It is interesting to note that this is the 
range of crack velocities within which Fig. 5 suggests 
that R may fall with increasing c~, an inherently 
unstable characteristic. Fracture surfaces here show 
clear arrest lines, so that stick-slip crack propagation 
certainly occurred, although it may only have been 
precipitated by torsion wave interactions. 

6. Further analysis: dynamic effects 
Because 0 and a~ clearly constitute a satisfactory first- 
order description of the specimen deformation, the 
consistency in R values computed from it is unlikely to 
be merely fortuitous. However, the conditions on 
which the quasi-static analysis rest are not exactly met, 
and second-order terms involving inertial effects 
should be accounted for if greater accuracy is to 
be sought. The essentially one-dimensional nature of 
the DT specimen greatly facilitates an "assumed dis- 
placement" analysis, in which an evolving non-linear 
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Figure 6 Comparison of measured crack velocity with steady-state 
value. (o) Rigidex 002/40, (m) Rigidex 002/50. 



rotation profile ~b(x) is sought which satisfies specified 
boundary conditions, but along which inertial forces 
arise and are (at least at some points) i n equilibrium. 
To illustrate the approach, we consider a cubic profile 
satisfying steady-state boundary conditions: 

(a) constant rotation rate, 0 = 0; 
(b) constant crack speed,// = 0; 
(c) near-tip rotation constant and equal to the quasi- 
static value 

~b(a) = (a - ae) ~ (a) (20) 

and, most critically, 
(d) quasi-static conditions in the beam support x > a. 
This is implemented as 

O2q~ 
- 0 ( 2 1 )  

~x~a 

The last condition is based on the idea that PR 
remains, like & constant, and could be computed by 
any of Equations 16 by replacing 0 by ~b(a), ae by 
(ae - a) and Ms by T(a); to derive Equation 21, we 
choose Equation 16c. However, Appendix A shows 
that for non-linear ~b(x) profiles, Equation 3 must be 
modified to 

where ' = ~?/ax, etc, and 

F = z-~(1 + v) (23) 

so that if ~b" exists at x = a, torque can be transmitted 
through the crack tip at a lower ~b'. We account for 
this fact by calculating PR through an energy balance 
as 

PR = T(a) ~ (am) _ Oi~p 2(a) (24) a 

that is, not putting T(a) = #K(p(a)/a; however, we do 
not account for it in Equation 21 since this renders 
analysis almost intractable. The effect is to over- 
estimate the kinetic correction and thus to under- 
estimate PR- 

The rotation profile 

cb(x, a) = 0 + A , (a )x  + A2(a)x 3 (25) 

automatically satisfies equilibrium at x = 0, since 
~b"(0) = 0. To satisfy Equation 20, we find that 

A1 = a2A2 (2 a_ae 3) a~0 (26) 

and to satisfy Equation 21 that 
(a'(a) = A, + 3a2A2 = q (27) 

q being a constant. The required profile becomes 

( 3 a ~ )  3 x 
49(x) = 0 + 1 - ~ a  q x -  ~O-a 

+ ½(O + qa~) ( x )  3 (28) 

from which q can be determined by satisfying equilib- 
rium for the beam as a whole. At any section, the 
rotation rate is (// = 0) 

$ L~-o-d + ~ + OaA 

[ 3 ( x )  l (x )31  
= 1 - 5  + ~  0 

3 { [ ( - ~ - -  ' ) q + 0 1 x  + ~  

-- [ ( ~  -- ~ ) q  -t- : ] ( x ) 3 }  d 

and the angular acceleration is (0 = 0) 

~6 --- [2 ~2~b 0 02q5 ~32q~] .2 
t?0~?-----a ~ + 2 + c~a~ae -gjja 

3~i a { [ q ( 1 -  ~ ) -  ! +  ~ ] ( X )  

2 - 0 + 0 ] ( x )  3 } a  

The inertial moment for the beam 0 < x < a is 

M, = gI~2 ( b d x  

= 

(29) 

(30) 

(31) 

Now, from Equation 22 we find that the applied 
moments at the beam ends must be 

M = T(O) = - # K  1 - 2 a j q -  (32) 

and 

9F(H)2 (0 + q - ~ ) ]  (33) T(a) = - # K  Iq  +---q- 

so that the equilibrium condition 

M, = M - T ( a )  

reduces to the quadratic in q: 

- - -  + 6 F  ae q2 
1 2 ~ ae a A 

+ - -  1 -  - - - - +  12F q 
a e 2 a ae 

+ ( ~ ) 6 F ( H )  2a~ = 0 a  (34) 

whose solution is straightforward given all of the 
geometric parameters. 

Since ~ (a) = -q~i and T(a) is given by Equation 
33, Equation 24 becomes 

e~ = ~Kq 2 1 -  ~, 

+ 9 F ( H f ( ~ ) 2 ( 1  + 1 0 ) 2  l q  (35) 

The existence of the last term in Equation 35 shows 
that energy supply to the crack tip can be maintained 
for ~ > ct. 

If the stiffening effect of beam curvature could be 
neglected, Equation 34 would reduce to 
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Figure 7 Comparison of measured load during fracture with that 
corresponding to one of two displacement modes allowed by the 
dynamic analysis. (0) Rigidex 002/40, fin) Rigidex 002/50. 

whence 

M 

and 

PR 

o [1  - l(a,/a)(a/c,)'] 
q = a ]L  i - ½(a/c,) d 

(36) 

o [ 1  - _ 
(37) 

ao L I - J 

l 

1 - ½(/t/ct) 2 _] 

(38) 

For each test, PR and P (from Equations 32 and 
19) were calculated for each of the two roots q, 
representing different admissible deformation modes. 
One root was always very close to this low-curvature 
solution and produced R values quite close to those of 
Equation 16c plotted in Fig. 5, although the corre- 
sponding loads were often very different. The other 
root was associated with a greater near-tip ~b" value, 
and yielded a higher load value and at low crack 
velocities a lower R value. At higher velocities, this 
second root produced a higher R value. In each case, 
it was easy to establish which mode operated by com- 
paring the predicted load with that actually measured; 
Fig. 7 shows that for the selected mode agreement was 
much better than for the quasi-static value (Fig. 4). 

R values for HDPE calculated by this analysis are 
plotted in Fig. 8. They closely resemble those com- 
puted using the quasi-static analysis using O/a~ 
(Equation 16c), and, since they are based to some 
degree on all of the known boundary conditions, lend 
them additional support. It is believed that the lower 
R values yielded by this approximate dynamic analysis 
are mainly due to shortcomings already discussed, so 
that the more easily derived quasi-static results may 
well be of at least equivalent accuracy. 

It is interesting to consider briefly the results of tests 
on Araldite MY750 in this context. The higher modu- 
lus and lower toughness resulted in very high crack 
velocities (up to 400 m sec -1 ) for quite modest impact 
velocities, but these still always fell short of ~i~. For 
these specimens, ct was 300msec ~, confirming our 
hypothesis that it does not impose a limiting velocity 
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Figure 8 Crack resistance as a function of crack velocity in two 
HDPE grades. Computed by dynamic analysis from displacement, 
displacement rate, crack length and velocity data. (o) Rigidex 
002/40, (121) Rigidex 002/50. 

on non-linear torsion profiles, and suggesting that far 
higher velocities can be achieved in HDPE than those 
so far attained - some recent tests have fulfilled this. 
Here, the quasi-state analysis fails, producing negative 
R values. For Araldite, large volumes of data, com- 
puted by finite-element analysis of single edge notch 
and double cantilever beam specimens [12] fracturing 
under constant displacement, have still left some 
doubts about the underlying R(a) characteristic (assum- 
ing its unique existence). From a low-velocity plateau, 
this appears to sweep up to very high values at a 
geometry-dependent limiting velocity of 300 to 
330msec 1. DT results using our dynamic analysis, 
however, produce high-velocity R values lower than 
the plateau, and, at the highest velocity, negative. 
Clearly, further development is necessary to avoid an 
inherent tendency to under-estimate R, and will 
provide a considerably more valuable test. 

Finally, we note the relevance of recent lumped- 
parameter analysis of the Charpy impact test [15]. 
Embracing contact stiffness effects by extension 
from a mass-spring-support to a spring-mass-spring- 
support model introduces wave-like behaviour, 
although waveguide-like behaviour of the specimen 
itself is not considered. Due to the spectrum of poss- 
ible vibrational modes, even if the material has a 
constant-R characteristic, quasi-statically computed 
values using displacement data only can scatter 
around it by discrete factors which multiply and 
diverge as the time-scale falls. An apparent R charac- 
teristic emerges whose average value and scatter 
increase rapidly with ~ as an artificial limiting velocity 
is approached. This is such a common picture in data 
from materials, such as Araldite, whose fractography 
and dynamic properties would not in themselves lead 
one to expect strong rate dependence in R, that similar 
effects might be suspected to be occurring in other geo- 
metries. The DT geometry is, of course, waveguide-like 
without considering contact stiffness. Our dynamic 
model effectively discretises it by restricting its tor- 
sion profile qS(x) to a reduced cubic, and satisfying 
equilibrium only at one point. A second R value 
emerges because of the curvature-dependent torque/ 
torsion relation - but here we are able to discriminate 
between them using a parameter (load) redundant to 



the quasi-static analysis. It is, therefore, to be hoped 
that considering higher-order terms in ~b(x) in further 
development of the analysis may help to reduce scatter 
further, if sufficiently accurate load measurements can 
be used to discriminate more finely between defor- 
mation modes. 

7. C o n c l u s i o n s  
Brittle fracture can be induced repeatably in small 
specimens of highly ductile gas and water pipe grade 
polyethylenes, using a simple drop-weight loaded 
double torsion (DT) specimen. Crack resistance, R, 
during steady high-speed crack propagation can be 
estimated reliably, from crack length and projectile 
displacement data, using a simple quasi-static defor- 
mation analysis. However, crack propagation can be 
sustained at well above the conventionally-defined 
torsional wave speed, yielding negative R values by 
this method; these high velocities are explained by the 
ability of torsional waves of non-uniform twist to 
travel at up to the higher shear wave speed. An esti- 
mate of the torque/twist relation for this generalized 
situation leads to an approximate dynamic analysis 
which supports the quasi-static results at low crack 
velocities while yielding finite (though somewhat low) 
results for high velocities. The model is capable of 
considerable refinement without modifying the under- 
lying hypotheses. 

Appendix A 
Non-uniform torsion of a rectangular beam 
Consider the elemental length of a rectangular- 
sectioned torsion beam shown in Fig. A1. The dis- 
placement system 

Vx = O( y ,  z ) c y  

"O y  = - -  ~ z  --  v f tpq~" d y  

v~ = c~y - v f dz 

(A1) 

accounts for a small rotation ~b due to torsion, for 
warping ~(y, z) and, through the integral terms, for 
unconstrained in-plane contraction under axial stress 
(a realistic assumption for small 0"). Equations A1 
imply strains 

Figure A1 Rectangular beam under torsion 

exx = ~(y,  z)~b" 

eyy ~ ezz ~ - -  Yexx 

exz = ~-~z + y - 

and 

ey z - -  v ~ "  [63 ~zf¢dY ÷ 

The strain energy density is 

I 2 2 2 2 2 ~t l(2exy + exz + eyz) + (exx + eyy + ezz ) 

a 04" v ~xx f dy (A2) 

v~f¢~"d~ 

dz] 

q 1) (exx + eyy + Gz)2J (A3) + 1-2-------~ 

To achieve a first-order estimate of the effects of q5 
derivatives, we neglect not only terms in 4~', but also 
those arising from in-plane shear. The strain energy 
per unit length becomes 

Ue = ]~),2 3--H/2 d-B/2 -~y - -  Z 

+ ~z -- y + (1 + v ) \ 4 , ]  02 d y d z  

(14) 

The warping function 0 must satisfy Laplace's equa- 
tion and stress-free boundary conditions; the exact 
solution is an antisymmetric infinite series [13]. The 
lowest-order non-trivial approximation is a cubic 
which can be expressed as 

~b = yz[1 - 2 m f l  + n f l ( y  2 - z 2 ) / H  2] (A5) 

where fl - B / H ,  whence 

U e = 1 # B 3 H ( o ' 2 { m 2  + (1 - mfl) 2 

+ 3n[m( I _ f14) _ 5fl  ÷ f13] ÷ 76/,/2[~g8 ÷ g l ]  

+ z[(1 - 2mfl) 2 -- 3 n i l ( 1  - 2rnfl)(1 - f12) 

+ 136 nZf12g2] } (A6) 

where 

g, _ fi2[~(1 +/~2)  + 1 ~ 1  

g2 - f12[~__ 6 2 ~/~ + 1/~] 

and 

z- 24 k ~ b ' /  

Equilibrium can now be satisfied approximately by 
determining m and n values which yield a minimum in 
u. This procedure yields 
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= fl ~ ( ~  + g, + zfl2g2)(1 + 2v) - 1-~o(1 - f12)(1 + 3211 + 4 z ] ) [ {  + (1 - 32)(1 + 2'r)] '~ 
m ( A 7 )  ( .) 

and 

2 
/7 -- 

5 

whose successive solution and 
Equation A6 solves for 

U e = ~ t B 3 H ~ ' 2 u * ( 3  , "c) ( A 9 )  

For a process of torsion only, and in which inertial 
forces are absent or do not significantly modify defor- 
mations and kinetic energy of torsion and warping is 
negligible, the external work done is - 1T4/per  unit 
length and an energy balance leads to 

T = - # ( ½ H B 3 ) u * ( 3 ,  z)q)' (A10) 

The exact solution for z = 0 is 

T = - # Z H B  3da" 

where Z(fl) is a tabulated function [13] which is com- 
pared with ~-u *(t~ 0) in Table AI. Although higher 3 ~ ,~  

terms are needed to accommodate boundary conditions 
for low but finite fl, the cubic approximation is close 
enough to justify writing the non-uniform torsion 
equation as 

where 

.(1 - fl2)(m[1 + fl2(1 + 4z)] - fl[1 + 2z]) - 2 f l t  
- - - (1 - -  ~--~1 2 1 5  ~ - ( f  --t-- ~-~ J (AS) 

substitution into which, using Equation A l l ,  becomes a non-linear 
wave equation: 

- c~4/' T* - 2 r ~  1 ~ - ~ j j  = 0 

(A14) 
2 where ct =- I~K/~I. For small fl, this reduces to 

(1 + V) H 2 _ = 0 - c~qY' 1 + |2-77 

T = - # K ( Y T * ( 3 ,  z) (All )  

T* - u*(fl, ~) 
u*(#, O) 

and #K is the exact polar torsional rigidity. 
Computed values of T*(fl, z) are plotted in Fig. A2. 

For very thin beams 

T(0, r) = -tLKq~'[1 + ~ (1  + v)(1 + (4/'/4¢)2)] 

(A12) 

and this remains an acceptable correction up to 
fl - 0.2 and z -~ 0.5. For higher fl (squarer sections) 
the greater polar symmetry reduces non-uniform tor- 
sion stiffening; a round bar, for which no warping 
occurs, will of course exhibit none. 

For a process of torsion and rotation of the element 
in which rotational kinetic energy is significant, rota- 
tional equilibrium in the absence of external moments 
requires that 

dT 
d--~ + ~oI~ = 0 (A13) 

T A B L E  AI  The torsion constant u*(fl, 0) from this analysis 
compared to the exact value tabulated in [13] 

1 u* H/B = fl ' ~ (fl, O) Z(fl) 

1.0 0.1407 0.1406 
1.2 0.166 0.166 
1.5 0.196 0.196 
2.0 0.231 0.229 
2.5 0.253 0.249 
3.0 0.268 0.263 
4.0 0.288 0.281 
5.0 0.301 0.291 

10.0 0.323 0.312 
oo 0.333 0.333 

(A15) 

which, even in the simplest case, has no constant- 
amplitude, finite-wavelength harmonic solutions. The 
anomalous singular behaviour of Equation A15 at 
extrema in ~b is largely due to the neglect of ~b" terms 
in Equation A2, but the cases analysed in Appendix B 
and the text are not seriously affected. 

Consider now large-~ rotation profiles: those of 
large amplitude or small wavelength. Fig. A2 already 
suggests that as z -~ oo for fl > 0, T* approaches a 
limit, and inspection of Equations A6 to A8 shows 
that 

(1 + f12) 
u*(fl, oo) - 4fl 2 (AI6) 

This corresponds to complete suppression of warping, 
so that the assumptions made to derive the approxi- 
mate small-z solution (no in-plane shear contribution 
to strain energy, no inertial constraints on warping) 

Increase in transmitted torque 
T~ T(% fl)/1(0, #) 
2 I t I I / . ~  

fi=o 

o2 

15 
0 3 -  

0-4 

t I I I 
0 02 04 0.6 0,8 

Torsional gradient factor, v z~ (1+ v ) (HoY Y¢') e 

Figure A2 Stiffening effect of non-uniform torsion in a rectangular 
beam. 
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lose their importance. Since du*/dz  ~ 0, the wave 
equation regains linearity: 

- ~qS" = 0 (A17) 

where cs - (t@) 1/2 is the material shear wave velocity, 
and constitutes the limiting speed of torsional waves in 
beams of  any section. 

A p p e n d i x  B 
Torsion of a rectangular beam in which one 
section remains plane 
This situation has been analysed by Timoshenko [14] 
using an approximate method analogous to that of 
Appendix A, and therefore provides a suitable test 
case. 

A thin (fl ~ 0) rectangular beam of length 
- L  < x < L is prevented from rotating at mid- 
span, and subjected to equal moments M at its ends. 
The static torque at any section is 

T = M , - L < x < 0  
(B1) 

T = - - M  , 0 < x <  L 

Clearly, d/(x) and its associated warping function 
are symmetrical in x, and the latter, being anti- 
symmetrical in (y,  z), is zero at x = 0. Let the beam 
be cut at this section. The torque distribution remains 
identical, but the separated faces are now free to warp 
incompatibly, with axial displacements +vx(y ,  z). 
Timoshenko reasoned that compatibility was 
previously maintained by tensile stresses Pxx(Y, z) 
proportional to the gap left by their removal, and, 
assuming these to decay exponentially with + x ,  
showed that their removal caused the end rotation to 
increase form 0 to 00, where 

0 [5(1 + v)] '/= H 
- - =  1 -  (B2) 
00 6 L 

The present analysis differs in regarding q~(x) as 
prescribed. The local torque is 

[ ("*"Yl r(x) = 1 + + v) j 

= M 

and, clearly, in the unconstrained case, 

M = - # K - ~  

Thus, defining q~* =_ (9/0, x* = x/L, (9"" - d~b*/dx*, 
etc., we have 

qS*' [1 + r* (q~*"'~2l - 1 = 0 (B3) 
J 

which can easily be solved from qS*' = 0 at x* = 0 
using a finite difference formulation for any value of  
the parameter 

¢(x)/8o, Local rofafion /unconsfrained end rofafion 

1 I H / L = O ~ '  

v = 0-35 ~ ~ , /  

O5 

0 0"5 x/L= 
Oisfonce from beam cenfre 

Figure B1 Rotation profiles of a thin rectangular beam, 2L long, 
held at its centre and twisted at both ends. 

T*-= 14(1 + v ) ( H )  2 (B4) 

Typical rotation profiles for various (H/L) ratios 
with v = 0.35 are plotted in Fig. B1. Because the 
region of non-uniform torsion is so localised, 0/00 falls 
linearly with (H/L) for H < L, and the result can be 
expressed as 

0 1 0.315(1 + v)l /2(H) (B5) 
00 

The numerical factor is some 15% less than that due 
to Timoshenko. 
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